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Theory of thermal explosion in a vessel with exothermic reactions was developed in
papers [1 to 3], Cases of plane, cylindrical and spherical symmetry were examined,
Investigation of stability of equations of steady-state theory of thermal explosion [4]
showed that only one regime will be stable which corresponds to the lower temperature
which can establish itself in the vessel ,

A qualitative investigation of stability of solutions of steady-state theory of thermal
explosions is carried out below for bounded vessels ,

Ir the review article of [5] the problem was posed to prove that from the existence of
a steady-state solution for a certain vessel, the existence of a solution follows for a ves-
sel inserted in it, In this paper a proof is given for this statement, which is different
from the one presented in (6], It is also proved in this paper that from the existence of
a stable solution for a vessel there follows the existence of a stable solution for an inser-
ted vessel

1, 1°, Stationary theory of thermal explosion leads to the problem of Dirichlet ;
0% 0%u 0*u
W+—E)Tﬁ-+"5z7-i_q)(u)$o’ wlp=0 (1.1)
Here U is dimensicnless temperature, X', [/, £ are dimensionless coordinates, T s
the boundary of the region, ¢ (%) is the function of heat generation, It is assumed that

>0, dp/du>0, d¥¢/dut2>0 @=n (1.2)
Usually the expression @ = €" is taken for the function ¢, This expression is obtained

through some simplification of relationships of chemical kinetics . Solution of problem
(1.1) is equivalent to the solution of nonlinear integral equation

.] (l
()= VG, )@ (uy) dy (1.3)

Here x , y are points of domain T, @ (x, y) is Green's functions of the Laplace
operator for the Dirichlet problem , (The absence of concentrated heat sources in the
vessel is assumed) ,

2°, Let us examine the problem of existence of solution of Equation (1, 3) for the
domain o’ C o under the condition of existence of solution of Equation (1, 3) for the
domain O,

We introduce the following notation for the operators :
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Aw == —3—[—'\ G(X,¥) @ (u)dy, Au= %' S G (x,y) @ (u)dy (1.4)
[ ¢’
Let Uy be a solution of Equation
Au=u (4.5)
We shall show that in such a case a convex closed set 0 S U = U, turns into itself
under transformetion 4 , In fact 0 SAW <AUy = Uy, because dp /AU = 0, The set
of functions 0 < U =, is determined on T,
Let us examine this set in the domain o’ C 6. We shall show that the operator A1 U
trapsforms the set 0 << u << yy(x =¢’) into itself, For this it is sufficient to show that

S G'ods S Gpds o GG 1.6)
¢co g'ce
Here
G(x,y)=P(xy)+g(xy), xXYES°
Here P (X, Y) is the potential of a point source in the free space, while g( X, ¥) is
a harmonic function in C SuCh that G' Ir‘ = 0, From fundamental properties of Green's
function it follows that @ ‘< @ or g'< g on the boundary I’ of domain ¢’ Co.
Since @ and ¢ are harmonic functions, then @ ‘< g for all x, y=o'. From this G e
on O,
Thus, the completely continuous operator 4 U transforms the set 05 U < U, into
itseif, From this 1t follows according to the theorem of Leray and Schauder [7] that
representation of A’ has a stationary point, In the domain of

uy! < g .
2, 1°, The investigation of stability of solutions in the steady-state theory of ther-

mal explosion will be carried out by the method of small perturbations ,
Let us examine the nonsteady-state equation of heat transfer

-—(%:Au—{—cp(u), ulp =0 (2.1)

The solution of this equation is presented in the form
u(x,y) = 1o (¥ + o (x, 1) (2.2)
where U, is the solution of he problem (1, 1) the stability of which is being examined,

and W (X, ¢)is a small perturbation , The initial and boundary conditions for W( X, £)
have the form

Ol o=8(x), =0, (g|p=0) 2.3)
Taking into consideration the smallness of W( X, £) we obtain from (2, 1) and (2, 2)
the following equation 3 90 d (up)
e T (-4
We shall seek the solution of this equation in the form of a series
o]
it ,
o= E aif; (x)e v, Filp =0 (2.5)
i=0
It will be required that the function f;(z) ¢ *i'  satisfy (2, 4), then we will obtain
d (1) .
Mt () =0, filp =0 (2.6)

In this manner the problem has been reduced to a problem of the Sturm-Liouvilie type
(multidimensional analog). The initial condition can always be satisfied because it is
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known that the system of eigenfunctions of this problem is complete .,

If in the spectrum of eigenvalues all A; > 0 , then the solution Wy under examination
is stable ; if however even one A; < 0 is found, the solution is unstable , From the the-
ory of boundary value problems of the examined type, it is known that >‘O <A; . There-
fore it is sufficient to know only the sign of >‘O to answer the question of stability,

2°, In paper [9] it was proved that for the existence of solution of problem (1. 1),
which satisfies the condition

0 u<{R (R = const)
it is sufficient to satisfy the condition
P o
SEm) .

Here D is the diameter of the domain &, and X is a constant depending on the dimen-
sionality of T,

It follows from (2, 7) that for sufficiently small D the problem (1, 1) has solutions
which are arbitrarily small, We shall demonstrate the stability of these solutions in the
framework of the theory of small perturbations, As a preliminary step let us formulate
two theorems the proof of which can be found in [8],

Equation Af(x) + (A + ¢ (x)) f(x), x& £ isexamined, The boundary condition
is that the function /' ( Xx) becomes zero on the boundary &,

Theorem 1, If eigenvalues of the problem with a function ¢(X), a domain &'
and a boundary condition J = 0 are compared to eigenvalues of a problem in which the
domain and the boundary conditions are preserved, while @ ( X } is replaced by another
function, then every eigenvalue does not increase with increasing g (X) .

Theorem 2 , Ifeigenvalues of this problem are compared with eigenvalues of a
problem in which the domain # is replaced by domain £’ C I, the condition J = 0
is established on the boundary of domajn Z  and functions g ( X) is retained the same
as before, then the eigenvalues do not increase for an increase in the domain,

We shall examine the problem

(d (i) i .
Ajy + "\id(,;“ = 7‘~i) li=1Y, lilp =0 (2.8)

Let 0 Su </, Since dgcp/du2 20, then
de _ dg(R)

de ™ du T
We substitute 8 for d¢p /dU in Equation (2, 8)and arrive at the following problem :
Aj; - 8;fi =0, folp =0 (6; == A; +0) (2.9)

It is known that for this problem O; > 0, It will be shown that for continuous decrease
of diameter of @, (31 tends to infinity ,

For this purpose we formulate problem (2, 9) for a square with side @ , which contains
0. For this problem 8§, = 277" /a° which tends to infinity with decreasing @ ,

It follows from Theorem 2 that this remains valid also for domain T, when its dia-
meter tends to zero, For sufficiently small domain O, &, becomes greater than § and
therefore }‘o of problem (2, 9) becomes greater than zero,

Let the problem (2, 8) be formulated for these small C, Since d®/dU =9 , then
according to Theorem 1 the first eigenvalue of problem (2. 8) is not less than the first
eigenvalue of problem (2. 9) and therefore it is positive .

Since for sufficiently small O there are sufficiently small &y, we can always assume
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that 0 =14, S&, From this it follows that problem (2, 6) has a positive spectrum for
sufficiently small O,

3°. We shall prove the existence of a stable solution of Equation (1. 2) for the domain
0’ C o under the condition of existence of a stable solution of Equation (1, 2) in the
region O, , , ,

In Section 1 it was prcived that solution W, exists for the region O, and Uy S Uy,
It will be shown that Uy is stable if U, is stable. Problem (2, 6) wiil be formulated
for reg’ion U, Since W, is stable, }‘“o >0, Now we shall formulate the same problem
for Uy and domain O, Since o' &d and

de (10) qu (140)

due X du

(by virtue of (1, 7) ), we immediately have as a direct consequence of Theorem 1 and 2
that the zeroth eigenvalue corresponding to solution uo' is positive ,

The author thanks G, I, Barenblatt for formulation and discussion of the problem, and
also A, G, Istratov, B, B, Librovich and Iu, S, Riazantsev for advice and comments ,
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